Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Miles, Janet; Bergstrand, Sten; Mana, Giovanni; White, Rod (Ed.)Abstract Current gravitational wave observatories rely onPhoton Calibrators(Pcals) that use laser radiation pressure to generate displacement fiducials used to calibrate detector output signals. Reducing calibration uncertainty enables optimal extraction of astrophysical information such as source distance and sky position from detected signals. For the ongoing O4 observation run that started on May 24, 2023, the global gravitational wave detector network is employing a new calibration scheme with transfer standards calibrated at both the National Institute of Standards and Technology (NIST) and the Physikalisch-Technische Bundesanstalt (PTB). These transfer standards will circulate between the observatories and the metrology institutes to provide laser power calibration traceable to the International System of Units (SI) and enable assessment and reduction of relative calibration errors for the observatory network. The Laser Interferometer Gravitational-Wave Observatory (LIGO) project and the Virgo project are currently participating in the new calibration scheme. The Large-scale Cryogenic Gravitational-wave Telescope project (KAGRA) is expected to join in 2024, with the LIGO Aundha Observatory (LAO) in India joining later. Before implementing this new scheme, a NIST-PTB bilateral comparison was conducted. The results of this comparison, with significantly lower uncertainty than previous studies, are reported. We also describe the transfer of power sensor calibration, including detailed uncertainty estimates, from the transfer standards calibrated by NIST and PTB to the sensors operating continuously at the interferometer end stations. Finally, we discuss the ongoing calibration of Pcal-induced displacement fiducials for the O4 observing run. Achieved combined standard uncertainty levels as low as 0.3 % facilitate calibrating the interferometer output signals with sub-percent accuracy.more » « less
-
The detection of gravitational-wave signals by the LIGO and Virgo observatories during the past few years has ushered us into the era of gravitational-wave astronomy, shifting our focus from detection to source parameter estimation. This has imposed stringent requirements on calibration in order to maximize the astrophysical information extracted from these detected signals. Current detectors rely on photon radiation pressure from auxiliary lasers to achieve required calibration accuracy. These photon calibrators have made significant improvements over the last few years, realizing fiducials displacements with sub-percent accuracy. This achieved accuracy is directly dependent on the laser power calibration. For the next observing campaign, scheduled to begin at the end of 2022, a new scheme is being implemented to achieve improved laser power calibration accuracy for all of the GW detectors in the global network. It is expected to significantly improve absolute and relative calibration accuracy for the entire network.more » « less
-
null (Ed.)The advanced LIGO gravitational wave detectors need high power laser sources with excellent beam quality and low-noise behavior. We present a pre-stabilized laser system with 70 W of output power that was used in the third observing run of the advanced LIGO detectors. Furthermore, the prototype of a 140 W pre-stabilized laser system for future use in the LIGO observatories is described and characterized.more » « less
-
Photographs of the LIGO Gravitational Wave detector mirrors illuminated by the standing beam were analyzed with an astronomical software tool designed to identify stars within images, which extracted hundreds of thousands of point-like scatterers uniformly distributed across the mirror surface, likely distributed through the depth of the coating layers. The sheer number of the observed scatterers implies a fundamental, thermodynamic origin during deposition or processing. These scatterers are a possible source of the mirror dissipation and thermal noise foreseen by V. Braginsky and Y. Levin, which limits the sensitivity of observatories to Gravitational Waves. This study may point the way towards the production of mirrors with reduced thermal noise and an increased detection range.more » « less
An official website of the United States government
